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Slow flow of a fluid carrying a uniform current 
past a conducting ellipsoid of revolution 
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The method of matched asymptotic expansions is employed for investigating 
the effect of a uniform current on the velocity field of a viscous, incompressible, 
conducting fluid streaming past a stationary conducting ellipsoid of revolution, 
assuming that the Reynolds number is small. It is also assumed that at infinity 
the velocity and uniform current are parallel to the axis of the ellipsoid. It is 
found that the presence of the current increases or decreases the drag coefficient, 
depending on whether the fluid conductivity is larger than that of the ellipsoid 
or vice versa. It is suggested that this effect of the current on the drag coefficient 
holds for all axisymmetric bodies that are also symmetric about a plane per- 
pendicular to their axis. The case of a circular disk broadside on the undisturbed 
current, obtained as a special case of a planetary ellipsoid, is slightly different; 
when the conductivity of the disk is non-zero the electromagnetically induced 
flow field vanishes. 

1. Introduction 
The Stokes creeping flow, induced by the distortion of a uniform current, in 

a conducting fluid occupying the whole space, by the presence of a non-conducting 
sphere, was investigated by Chow (1966). The present author (Sozou 1970) 
extended this work to the case when the distorting non-conducting body is an 
ellipsoid of revolution with its axis parallel to the direction of the undisturbed 
current at  infinity. In  both these papers it was found that the induced flow 
velocity was finite and non-zero at infinity and the drag was not affected by the 
induced velocity field. It was suggested that the non-vanishing of the induced 
velocity at infinity was due to the use of Stokes approximation, that is, the 
neglect of the inertia terms from the momentum equation. 

Chow & Billings (1967), retaining the inertia terms in the momentum equation, 
investigated the problem of a current carrying fluid streaming past a stationary 
sphere, by using the method of matched asymptotic expansions. This method, 
a summary of which may be found in Van Dyke’s (1964) book, was developed 
by Kaplun & Lagerstrom (1957) and Proudman & Pearson (1957). Here, we also 
retain the inertia terms in the momentum equation and, using the same method 
of matched asymptotic expansions, we investigate the problem of a current 
carrying fluid streaming past a stationary conducting ellipsoid of revolution, 
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having its axis parallel to the direction of the undisturbed stream at infinity. 
The problem considered by Chow & Billings (1967) and that of a circular disk 
broadside on to the direction of the undisturbed current, are special cases of the 
more general problem considered here. The corresponding problem for a lion- 
conducting fluid was considered by Breach (1961). 

2. Flow past an ovary ellipsoid 
We use a cylindrical co-ordinate system ( r ,  0, x) with the origin at  the centre of 

the stationary ellipsoid and the x axis along the axis of symmetry of the ellipsoid, 
which is parallel to the direction of the undisturbed current and stream at infinity. 
At infinity the current density is J, and the fluid speed is U,. 

If we let 

be the fluid velocity and take the curl of the momentum equation we have 

e e 1 
-Do$D2$= - v D ~ $ - - V X ( J X B ) ,  
r2 r P 

where J is the current density, B the magnetic field, p the fluid density, v the 
coefficient of kinematic viscosity, 

At infinity J tends to its undisturbed value J,. At the surface of the body, J,, 
the normal component of J, and the tangential component of the electric field are 
continuous. The current J and the associated magnetic field are given in the 
author's earlier work (Sozou 1970) €or the case when J, = 0. When the ellipsoid 
is conducting, J, + 0 and the corresponding expressions for J and B must be 
modified by replacing the parameter B, in the original work by b,, where 

and v, and v1 are the electrical conductivities of the ellipsoid and the fluid, 
respectively. 

Let u be the semi-major axis and e the eccentricity of a meridian section of 
the ellipsoid. If we use elIipsoidal co-ordinates and ,u ( = cos0) we have 

5 = uepQ r = ae(1 -p2)4 ( 6 2 -  I)& (2) 

and the ellipsoid is given by 6 = Q > 1. When co = 1 we have an elongated rod. 
We take a characteristic length a and define non-dimensional (primed) vari- 

ables by 
x = ax', r = ar', @ = Uoa2$' 

If we replace B, by b, in the J x B expression computed by the author (Sozou 
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1970), and use (2), the non-dimensional variables and omit primes, (1) becomes, 

where R is the Reynolds number given by R = aU,/v, 

and 

(i) Oseen expansion far from the ellipsoid 

We introduce the Oseen variable 
z = RC, (4) 

where z is fixed its R tends to zero and set 

where the leading term in (5) represents a uniform stream a t  infinity and is given 

( 6 )  Yo = ie2x2(  1 -p2).  by 

Substituting (4), ( 5 )  and ( 6 )  in ( 3 )  we obtain a linear equation in Y, the solution 
of which is 

Y, = - C,( 1 + p) [ 1 - exp{ - +ex( 1 - p))] - Qb, e4R1 x (  1 - p2) 

= - Cl( 1 +p)  [I - exp { - ieRC(1 -p))] - Qb,e4RRlLJ 1 -,us), (7) 

where C, is an arbitrary constant which will be determined later. 

(ii) Stokes expansion near the ellipsoid 

For the inner region we set 

+ = +o(P, PI + R+l(Y, P )  + * .  * Y (8) 

where +, represents a uniform stream past the ellipsoid and is given by (Happel 
& Brenner 1965) 

If we substitute (8) and (9) in (3) we obtain 

E4~b1+e-1E1+0E2+0 = 
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The solution of this equation is 

b e5R, 
= W0+ O- [fo(6) -f,(d) - (7p2 - 3)f1(6)l,uU(l -p2)  

to 
7A0 

+ (1-,u2)I;X2m(5)PBn(Pu), (11) 
1 

where C, is en arbitrary constant and the expression in square brackets is the 
solution obtained by the author (Sozou 1970) when the inertia terms were 
neglected. A,, fo(6) and fl(5) are specified in the author’s original paper. The 

is a particular integral of the equation 

E4$1+e-1El$,E2$0 = 0 

and was worked out by Breach (1961). PA(,u) denotes the first derivative of the 
Legendre polynomid of degree n. X2,(<) is a complicated function which for 
large 5 is O(54-2m). Here we use a slightly different notation and absorb a constant 
in the function X2,( { )  as originally defined by Breach (1961). 

where 

If we expand the Oseen and, making use of (12), the Stokes expression for $ 
in ascending powers of the Oseen variable x we have 

e2z2(1 -p2)  C,ex 1 
(1 - p2) - - b,e4 R,z( 1 - p2) 

2R2 2R 6R @ - Oseen = 

e2z2(1 -@) - %eZ(l -p2) +- C, e2 x2(  1 - p 2 )  + $-Stokes = 9,u( 1 -p2) 2R2 6R 2R 24R 

Hence, for matching 

C, = ;e3(C, - b, R,) and C2 = &e3(Co - b,R,). 

3. Flow past a planetary ellipsoid 

ellipsoid. If we use ellipsoidal co-ordinates ,u and 6 we have 
Let c be the semi-major axis and e the eccentricity of a meridian section of the 

x = cepe, r = ce([2+ I)* (1 -@)* 

and the ellipsoid is given by g = f;, 2 0. The case go = 0 corresponds to a circular 
disk. 
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If we do an analysis similar to that of the last section and express the stream 
function in units of Uoc2 we find 

y? - Oseen = $ezcz( 1 -p2) - cl( 1 +p)  [ 1 - exp { - QRce( 1 - p)}]  - i b ,  R1e4c( 1 -p2),  

where 

+ (1 -P2) ii z z m ( c ) ~ L m ( p ) ,  (14) 
1 

R is the Reynolds number defined by R = c&/v, 

R, = 4nJ:c2/pU:, c1 = e3(co-blRl)/3, 

co = 6/[e( 1 - e2)t - (1 - 2e2) sin-, el, 

b, = (go - cr,)/{a,[e( 1 - e 2 ) 4  - sin-, el + a,[sin-1 e - e( 1 - ez),]), 

a. and crl are the respective conductivities of the ellipsoid and fluid, and 

The expression in square brackets in (14) is the solution obtained by the author 
(Sozou 1970) when the inertia terms were ignored, with 23, being replaced by 
b,, which is the corresponding parameter for the case when the ellipsoid is con- 
ducting. A,,  go(5)  and g1(5) are defined in the author’s original paper. The expres- 
sion 

(1 -P2) ~ Z r n ( C )  PL,(P) 

(1 - P2) XZrn(C) G n ( P )  

is analogous to the expression 

of the last section and the functions Z,(c) can be worked out from the functions 
X,,(c) (Breach 1961). 

The case of a sphere can be obtained from that of an ovary or that of a planetary 
ellipsoid by letting e tend to zero and c to infinity in such a way that ec tends 
to r ,  the distance from the centre of the sphere. 

4. Drag coefficients 
The contribution to the drag coefficient comes from $o in the Stokes expansion 

(note that $l has a $o component) of the stream function. All the other terms of 
the expansion are odd in p and thus they do not contribute to  the drag. 

For an ovary ellipsoid the drag coefficient is found to be 
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For a planetary ellipsoid the drag coefficient is 

4nc0 e3 
3R ( 1  + iRc,). 

If we let e tend to zero, either in (15) or (16), we obtain 

which is the drag coefficient for a sphere. Here 

u = 2(u1-u0)/(2u1+u0), R = aUo/v and R, = 4nJga2/pU& 

where a is the radius of the sphere. 
From (15), (16) and the expressions for C,, cl, b, and b,, it follows that the 

presence of the current increases the drag coefficient if u, is greater than go. 

When uo is greater than u, the current decreases the drag coefficient. This can 
be explained as follows: 

When u1 > uo the ellipsoid offers a greater resistance than the fluid to the 
flow of current. The current lines are bent away from the axis of the ellipsoid and 
the current flux through the ellipsoid is less than when uo = ul. The rotational 
part of the Lorentz force, which produces the induced flow field, is proportional 
to its component parallel to the axis of the ellipsoid. This component is directed 
towards the body and is symmetrical with respect to  the equatorial plane of 
the ellipsoid but increases the coefficient of the ‘oseenlet ’, of the inner solution, 
which is proportional to the drag coefficient. When uo > u1 the picture is re- 
versed. The current lines are bent towards the axis of the ellipsoid and the current 
flux through the ellipsoid is greater than when u1 = go. The rotational part of 
the Lorentz force is directed away from the ellipsoid and decreases the drag 
coefficient. 

More generally, when a fluid carrying a uniform current is streaming past an 
axisymmetric body with steady low velocity which at  infinity is parallel to the 
axis of the body, the bending of the current lines will be away or towards the body 
axis and the rotational part of the Lorentz force will be parallel to the axis and 
directed towards or away from the body, depending on whether the fluid con- 
ductivity u1 is greater or less than the body conductivity uo. If  the body has 
also symmetry about a plane perpendicular to its axis, the Lorentz force is 
symmetrical about this plane and, like the case of the ellipsoid, the drag co- 
efficient increases or decreases depending on whether u, is greater than u, or 
vice versa. Indeed, one is tempted to conjecture that the drag coefficient increases 
when u1 > u, and decreases when uo > ul irrespective of whether the body has 
a plane of symmetry perpendicular to its axis. 

The drag coefficient for a circular disk perpendicular to the undisturbed 
stream is derived from that of a planetary ellipsoid by letting e tend to 1. When 
v, = 0,  co and c1 become 12/7r and 2(R1+6)/37r, respectively, and the drag 
coefficient for the non-conducting disk comes to be 
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When CT,, $. 0, as e tends to 1, b,, that is, the effect of the current on the drag 
coefficient tends to zero. This is to be expected. If the disk is non-conducting the 
current lines bend round to avoid it. When, however, the disk is conducting the 
current lines go straight through it and the current is undisturbed. This is true for 
any conducting lamina, plane or curved, and is due to the boundary conditions, 
which imply that, when the conducting obstacle is a lamina, J is continuous. 
Thus, the effect of the current on the drag coefficient of a thin body is minimal if 
the body is conducting and could be appreciable if the body is non-conducting. 

R E F E R E N C E S  

BREACH, D. R. 1961 J .  Fluid Mech. 10, 306. 
CHOW, C.-Y. 
CHOW, C.-Y. & BILLINGS, D. F. 

1966 Phys. Fluids, 9, 933. 
1967 Phys. Fluids, 10, 871. 

HAPPEL, J. & BRENNER, H. 1965 Low Reynolds Number Hydrodynamics. Englewood 
Cliffs, N.J. : Prentice Hall. 

KAPLUN, S. & LAGERSTROM, P. A. 1957 J .  Math. Mech. 6, 585. 
PROUDMAN, I. & PEARSON, J. R. A. 1957 J .  Fluid Mech. 2, 237. 
Sozorr, C. 1970 J .  Fluid Mech. 42, 129. 
VAN DYKE, M. D. 1964 Perturbation Methods in Fluid Mechanics. New York: Academic. 


